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Dynamics of colloidal crystals and colloidal liquids 

F Griiner and W P Lehmann 
Fakultat fur Physik der Universitat Konstanz, Bucklestrasse 13, 7750 Konstanz, FRG 

Received 27 January 1982 

Abstract. The dynamics of strongly interacting colloidal particles is studied in the range 
of medium to high particle concentrations. Both the short-range ordered liquid phase and 
the long-range ordered crystal phase are investigated by means of photon correlation 
spectroscopy. The results are discussed in terms of a memory function formalism which 
is shown to be applicable for both the liquids and the crystals. The viscoelastic approxima- 
tion for the memory function describes the experimental results in the liquid phase very 
well. For the first time results on single crystals are reported which exhibit a purely elastic 
behaviour. The theory enables us to extract information on the elastic moduli and sound 
velocities of the systems from the data, which in principle yield information on the particle 
interaction potential. The ‘phonon’ dispersion of colloidal crystals is also presented. 

1. Introduction 

Electrostatically stabilised colloids are nowadays widely used in chemical industries 
and have been the subject of scientific interest for a long period of time (e.g. Verwey 
and Overbeck 1948, Overbeck 1977). A most interesting problem in this field is the 
question of the interaction potential between colloidal particles which remains to be 
solved. A rather successful approach to tackle this problem is to study the dynamics 
of colloidal systems. These studies are also a basis for a better understanding of the 
interactions of linear polyelectrolytes and charged biological macromolecules, which 
play an important role in the living world. The invention of the photon correlation 
technique about ten years ago provided a very useful tool for these investigations, 
and since then a number of papers have appeared on the subject of the dynamics of 
interaction colloids or Brownian particles (e.g. Brown et al 1975, Schaefer 1977, 
Pusey 1978, Dalberg et a1 1978, Griiner and Lehmann 1979, 1980a). Parallel to the 
progress in the experiments, the theoretical understanding was developed (e.g. Alten- 
berger and Deutch 1973, Ackerson 1976, 1978, Hess and Klein 1978, 1979, 1980, 
1981, Hess 1981). Although these theories are rather complex due to the statistical 
nature of the systems, the resemblance of these systems to simple liquids helps us to 
understand the physics involved. In some cases the colloids are even possible model 
systems to study features with light scattering techniques, which are very hard to 
observe in atomic systems, as for instance the long time tail of the velocity autocorrela- 
tion function (Pusey 1980). Another interesting feature of these suspensions is the 
fact that at high enough concentrations long-range order builds up and colloidal 
crystals are formed, which allow the observation of Bragg scattering by visible light 
(Hiltner and Krieger 1969, Williams and Crandalll974, Schaefer and Ackerson 1975, 
Clark ef a1 1979). However, there are only a few experiments published, which deal 
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with the dynamical properties of these crystals (Dubois Violette et a1 1980, Mitaku 
et a1 1978), although their properties should render the interaction potential more 
easily accessible due to translational symmetry. 

In this paper, firstly we will show that both the short-range ordered colloidal liquids 
and the long-range ordered colloidal crystals may be described by the same type of 
theory, namely a memory function formalism based on the Fokker-Planck equation. 
The memory function itself, which may be expressed in terms of wavevector dependent 
elastic moduli, is treated in a viscoelastic approximation for the 'liquids' and a purely 
elastic one for the 'crystals'. The experimental data on the colloidal liquids confirm 
the assumption of viscoelastic behaviour and allow the determination of the memory 
function and its time dependence. The elastic moduli and the velocities of sound are 
extracted in the hydrodynamic limit. The first dynamical light scattering experiments 
from colloidal crystals, partly from large single crystals, are then presented. It was 
possible to extract the elastic modulus and a quasi-'phonon' dispersion. Since these 
data are closely related to the interaction potential between colloidal 'atoms', they 
yield information on the potential. It is shown that the usually screened Coulomb 
potential is not able to explain the data and some other form of the potential has to 
be assumed. 

2. Theory 

The dynamics of colloids may be derived from the Fokker-Planck equation. It has 
been shown by Hess (1980) that the more popular Smoluchowsky or Kirkwood 
equation leads to wrong answers in these strongly interacting systems. Therefore we 
start our discussion with an expression for the Laplace transform $(k, o) of the 
intermediate scattering function obtained from the Fokker-Planck equation for a 
system of particle density p = N/ V and mass m suspended in a viscous medium with 
friction coefficient 6 

where k is the wavevector and p = l/kBT. This expression is valid for moderate 
volume fraction of colloidal particles, where the electrostatic interaction dominates 
and therefore the hydrodynamic interaction may be neglected. The effects of the 
interaction between particles are described by the static structure factor S ( k )  = 
F(k, t = 0), which is readily accessible experimentally, and the memory function 

U ) ,  which is a k- and o-dependent longitudinal viscosity (Hess 1981), describing 
the friction caused by interaction between the colloidal particles. Because of this 
physical meaning of the memory function Mil we have choosen a different definition 
from that used by Dieterich and Peschel (1979). The expression of equation (1) is 
almost identical with that used in the theory of simple liquids (Hansen and McDonald 
1976, p320), except that in the case of colloids a separation of the vicosity of the 
solvent represented by 6 and an internal vicosity caused by particle-particle interac- 
tions represented by Mll is introduced. 

As indicated above, the memory function A&& o) plays the essential role in the 
dynamics of strongly interacting systems. To deal with this complicated function we 
now make several simplifying assumptions. Firstly, we neglect the coupling of the 
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density fluctuations to the temperature fluctuations, which corresponds to cp = cv for 
the colloids. This should be a reasonable approximation for colloidal liquids and 
crystals since temperature fluctuations are mainly coupled to the solvent and decay 
very rapidly. We may then express Mll in terms of wavevector and frequency dependent 
transport coefficients: 

(2) 
In the hydrodynamic limit, these coefficients are the internal bulk (5) and shear (7) 
viscosities. Secondly, we make the simplest approach for the time dependence of Mil, 
which is the viscoelastic approximation (Hansen and McDonald 1976, p 321) 

(3) 

where r M  is the relaxation constant of the longitudinal stress fluctuations. According 
to our first assumption, we do not have to distinguish between adiabatic (xS) and 
isothermal (xT) compressibility. Therefore we write 

(4) 

The k-dependent transport coefficients introduced here are, in the limit k + 0, the 
instantaneous shear (G,) and bulk (K,) moduli (Zwanzig and Mountain 1965), 
whereas x ( k  = 0) is the steady state compressibility of the system, that is x ( k  = 0) = 
l /Ko# l/K,. Taking the Laplace transform of equation (3) and comparison with 
equation (2) yields 

G(k, w )  = t ( k ,  w )  +4?7(k, U ) .  

Mii(k, t )  = [Km(k) +%m(k)-xil (k)l exp(-rM(k)t) 

x ( k )  =xS(k )  =XT(k)  = (P /p )S(k ) .  

Combining this equation with our first equation, the starting point of our discussion, 
we now get an expression for the intermediate scattering function in terms of the 
generalised moduli introduced above: 

) -l. 

2 
IO ~ ( k ,  w )  = ~ ( k )  ( io  + 

i o  +os +  io + r M ( k ) )  

The following abbreviations have been introduced: 

The corresponding F(k,  t ) ,  which is for instance determined by a light scattering 
experiment, is a sum of three exponentials 

F(k,  t )  = S ( k ) [ a l  exp(-rlt) +az exp(-rzt) + a3 exp(-r3t)]. 

However, two time regions may be distinguished. The first region corresponds to the 
time domain of fast variables with an approximate decay time and amplitude of 

(7) 
For the colloidal systems under consideration, ws is of the order of lo9 s-l, whereas 
w1 is several orders of magnitude smaller. Therefore we will neglect this component, 

2' 2 2  r3=os-w I 1 ~ w s ,  a 3  = 6.J lO/W s. 
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which does not show up in a Smoluchowsky approach, in our future considerations. 
We may do this since the amplitude is so extremely small and the time of decay is 
so short that we will never see any indication of that component in a photon correlation 
experiment. 

The other two decay times are typical times of the colloidal systems and therefore 
much slower: 

The typical time scales may be examined by forming the first cumulant from rl and r 2 :  

This initial decay time lies well in the time range of photon correlation spectroscopy 
and has been verified both theoretically (Stephen 1971, Pusey 1975, Ackerson 1978) 
and experimentally (Brown et a1 1975, Gruner and Lehmann 1979,1980a) for colloids 
where hydrodynamic interactions are negligible. In writing equation (9) we have made 
contact with the more commonly used nomenclature in terms of effective or coopefative 
diffusion coefficients. We have written down the theory in terms of elastic moduli 
and not in diffusion coefficients purposely, since the language of elastic moduli intui- 
tively suggests where the difference between liquids and solids has to be introduced. 

However, the validity of the starting equation (1) is not at all obvious in the limit 
of a purely elastic crystal, since the equation is only an approximation by itself, because 
of the projection operator formalism used and the continuum approximation involved. 
But we will show that the formalism based on equation (1) in the elastic limit will 
describe the experiments very well. 

The elastic limit is described by a purely imaginary viscosity and real relastic 
moduli. Hence we have to put rM(k)=O in equation (3) and (5 ) .  We then obtain, 
apart from the 'fast' solution, equation (7), the following decay times and amplitudes: 

2 2  2 2  
WI1 0 1 1  10 - 12 2r1,2 = -*-, 2a1,2=1* 2 
0 s  0 s  0 1 0  + W ? 2 '  

Furthermore, the difference between instantaneous and steady state moduli is no 
longer relevant, which is a further simplification. We therefore may write in this 
approximation 

It is seen that 0 1 1  is the longitudinal acoustic phonon frequency, and by combining 
equations (10) and (11) we arrive at an intermediate scattering function which is a 
one exponential decay with a decay constant of 

This result was first derived by Tanaka et a1 (1973) for the quasielastic scattering 
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from gels, treating the gel as an elastic continuum. Therefore the result of equation 
(12) seems to be applicable to any elastic system overdamped by a viscous solvent, 
as long as the interaction between the elastic modes of the solvent and the system 
may be neglected (Marqusee and Deutch 1981), as it is always at low concentrations. 
The other component is a purely elastic scattering in the elastic limit. Its decay time 
goes to zero as 

r Z + ? O / d l ) r M  (13) 
as r M  goes to zero, whereas its amplitude does not vanish. We believe that this elastic 
scattering is only present at all k values due to the continuum approximation involved 
in equation (1) and that it will reduce to the Bragg scattering when translational 
symmetry is introduced. 

With the result of equation (12), we have obtained a description of the experiment 
in terms of a well known friction (us) and the longitudinal acoustic phonon frequency 
or1. For the latter, we may use the established theories of solid state physics to express 
the constants G ( k )  and K ( k )  in terms of the interaction potential. Unfortunately this 
is not an easy task and we will therefore have to restrict ourselves to a few remarks. 
Since the potentilal is spherically symmetric and the crystals are of cubic symmetry 
(Williams and Crandall 1974) we may describe the dynamics by means of two elastic 
constants, Cll and C44 (Cl2 = C4, according to Cauchy’s relation). Furthermore, we 
may approximate these crystals with their rather long-range interactions to be isotropic. 
This approximation, which is reasonably fulfilled for NaCl, reduces the number of 
elastic constants further to one: 

E = C11= 3C44= 3G = K +$G (14) 

where we have introduced a new modulus, the elastic modulus E. These considerations 
imply that at small wavevectors, that is where E = constant, we expect a simple k 2  
dependence of rl, independent of the crystallographic direction. The modulus E is 
related to the second derivative of the interaction potential V ( r )  at the equilibrium 
positions of the particles (e.g. Born and Huang 1954): 

i 

Here, di is the equilibrium distance between neighbouring atoms. A geometric factor, 
which depends on the exact crystallographic structure, is omitted, since in this paper 
we are going to discuss only qualitatively the p dependence of the interaction. In 
addition, it is quite clear that the summation in equation (15) has to be carried out 
for quite distant neighbours. 

We will conclude the discussion of colloidal crystals by looking at the concentration 
dependence of the modulus E in equation (15) if we take the widely used screened 
Coulomb potential 

V ( r )  = ( z e / & r )  exp[-K(r-a)], K’ = 4.rpZe2/&kBT, 

which was also used for colloidal crystals (Joanny 1979). In the following, we will 
only look at proportionalities. Since K - p ”’ and di - P.-l13 we end up with 

(16) 

where the constants of proportionality may be determined from the exact calculation. 

E (p )  = Bp213 exp(b‘p’’’) exp(-bp’/6) 
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From equation (16) the dependence of E on the concentration is seen to be rather 
complicated. In particular, the concentration enters as an exponent, which originates 
from the screening function exp(-Kr). This screening however, is characteristic also 
for more complicated potentials, which are derived from the linearised Poisson- 
Boltzmann equation like, for instance, those of Russel and Benzing (1981). 

To summarise this section, we have shown that a memory function formalism 
based on the Fokker-Planck equation with a viscoelastic approach for the memory 
function, as is possibly the case in colloidal liquids, leads to a two-exponential decay 
of the intermediate scattering function. In a purely elastic approximation for the 
memory function, as should apply for colloidal crystals, a simple one-exponential 
decay is predicted, whose decay constant is given by the longitudinal sound frequency. 
This frequency may in principle be calculated from solid state theory. In the forthcom- 
ing sections, we will compare these predictions with our experimental data on colloidal 
liquids and colloidal crystals. 

3. Experiments 

The experiments were performed by photon correlation spectroscopy using light from 
either He-Ne laser ( A  = 6328 8,) or Argon laser ( A  = 4579 A). The samples were 
contained in cylindrical quartz cells of 6 mm inner diameter immersed in a temperature 
stabilised bath of index matching fluid (glycerin). The scattered light was detected at 
different angles by either a RCA C31034 or an EM1 9862 photomultiplier and the 
intensity correlation functions formed by the minicomputer based 4000 channel quasi 
real time autocorrelator (Lehmann 1981). For a more detailed description of optical 
details see Gruner and Lehmann (1980a). All experiments were performed at a 
temperature of 298* 0.5 K. The correlation functions were analysed using a multiex- 
ponential fit procedure developed by Provencher (1977). In all the experiments 
described here, it was necessary to correct for multiple scattering as described in 
Gruner and Lehmann (1980b) using the correlation functions of depolarised scattering. 
The field correlation function was calculated according to the Siegert relation 

(Z(T)I(o))= (z)'(1 +Aig(')i*) 

assuming Gaussian statistics of the scattered light. This is justified by the fact that, 
according to the central limit theorem the scattering volume in both systems, the 
crystals and the liquids, may be subdivided in many subvolumes of identical properties. 

The samples used were prepared from latex spheres of radius 0.0455 p m  and 
0.0425 p m  supplied by DOW with a standard deviation of particle radius of 5 % .  The 
particles were suspended in carefully deionised water with a certain amount of mixed 
bed ion exchange resin (MB2, DOW-EX) permanently left in contact with the 
suspensions. From pH measurements we determined the surface charge of the spheres 
to be Q = 1 O O O k  150 e- assuming that all protons emerge from the particles. When 
only the protons contribute to the screening of the electrostatic potential, the Debye 
screening length is calculated to be K-' = 2200 8, for the lowest and IC-' = 310 8, for 
the highest concentration. This has to be compared with mean distance between 
particles of 6000 8, and 1900 8, respectively. 

The concentrations given in this paper are determined from the dilution factor 
and the manufacturer's data on the concentration. Unfortunately there is some doubt 
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whether these concentrations are correct. The static light scattering measurements 
from colloidal crystals indicate a higher concentration by a factor of about 1.5. This 
is shown in table 1, where the crystal parameters for some of the colloidal crystals 
are calculated from the first Bragg peak assuming a BCC structure. 

Table 1. The concentrations pnom calculated from the dilution factor and the lattice 
constants dBCC and experimental determined density pBcc for different colloidal crystals 
assuming body centred cubic (BCC) crystal structure. The experimentally determined 
densities for a FCC crystal structure would be 8.9% larger. 

5.1 x lo’* 1.39X 10’ 6.4 x io+ 7.66 x 10l2 1.51 
10.1 x 10l2 1.73 x io5 5.13X 1 0 - ~  1.48~ 1013 1.47 
1.27 x 1013 1.90~ 10’ 4.68 x 1 0 - ~  1.95 x 1013 1.54 
1 . 6 ~  1013 2.05 x io5 4.33 x io-* 2.46 x 1013 1.53 
2.1 x 1013 2.25 x io5 3.95 x 10-~ 3.24 x 1013 1.55 
2.6 x 1013 2.4 ~ 1 0 ’  3.70 x io-’ 3.94 x 1013 1.52 

The ratio of the experimental density to the nominal density determined from the 
dilution factor is always 1.5 for the BCC structure, independent of particle size and 
different original solution supplied by DOW. There are only two possible explanations 
for this effect. The first would be a rather drastically inhomogeneous particle density. 
The crystal should be much more dense than the disordered colloid above the crystals. 
The second explanation, which we think is more likely, is a systematic error in the 
manufacturer’s statement about the volume concentration. 

In the concentration region of nominal 2.5 X 10” particles/cm3 up to approximately 
1.25 x 1013 particles/cm3 pronounced liquid-like order is obtained within several days 
from preparation. This order is very clearly seen in the static light scattering (Gruner 
and Lehmann 1979,1980a). Depending on the preparation procedure and on the 
type of the ion exchange resin, samples left alone in the refrigerator for several 
months showed sharp Debye-Scherrer rings in a laser beam, indicating that polycrystal- 
line samples had been formed. We have managed to obtain polycrystalline samples 
at nominal concentrations as low as 5 x lo+”. An example of the static light scattering 
for this concentration both as colloidal liquid and colloidal crystal is shown in figure 1. 
Apart from the relative intensities of the rings, the crystal pattern may be indexed 
according to a BCC lattice with the assignment of the rings shown in figure 1. 

At even higher concentrations (p  > 2.5 x l O I 3  particles/cm3) large single crystals 
with a length of about 10” are obtainable. At concentrations below 6 x  
1013 particles/cm3 they exhibit a Laue-type scattering pattern. Above this concentra- 
tion, the wavelength of the Argon laser is too long to fulfil the Bragg law. However, 
the formation of single crystals is very clearly seen from the extremely small turbidity 
of the single crystals. 

It should be mentioned that mechanical disturbances like rocking tend to decrease 
the size of the crystals and crystallites. The effect of a mechanical shock is healed 
however within several hours and the crystals have remained stable over years up to 
now. 
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4t 11 0 

I1 
I 

Wavevector k L105 cm-'t 

Figure 1. Static light scattering from a colloidal solution of latex spheres with diameter 
0.091 p m  at nominal concentration of 5 x 10" particles/cm3 in the liquid (broken line) 
and crystalline (full line) phase. No corrections for multiple scattering and turbidity effects 
are made. The numbers are the indices o l  the Bragg peaks according to a BCC structure. 

4. Results and discussion 

4.1. Colloidal liquids 

Most of the experimental data on the colloidal liquids has been published in earlier 
papers (Griiner and Lehmann 1979,1980a). The purpose of this section is to review 
the data according to the theory in 0 2 and to make a direct comparison with the data 
on colloidal crystals possible. 

All measured intensity correlation functions were corrected for multiple scattering 
(Gruner and Lehmann 1980b), and it turned out that two exponentials were always 
sufficient to provide an excellent fit to the data. The two-exponential form of the 
functions is an experimental justification for the visoelastic approximation made in 
D 2. The results for one particular concentration are shown in figure 2 together with 
the static structure factor S ( k )  from static light scattering measurements. It can be 
seen that the long-time decay constant goes towards the short-time decay for small 
k vectors. 

Since the samples are rather monodisperse, they do not show the incoherent 
self-diff usion term (Pusey 1980, Weisman 1980) present in previous experiments by 
Pusey (1978) and Dalberg eta1 (1978). From the data of the fit we are able to extract 
the memory function, which is, apart from numerical constants, the internal longi- 
tudinal viscosity. From equations (8), (6) and ( 5 )  it follows in the limit of w + 0 that 

Tc is the first cumulant given by equation (9) and r M  is the decay constant of the 
memory function (equation (3)), which is given by the equation 

r M  = rlr2/rc. (18) 

With equation (17) we have defined a reduced, dimensionless quantity Gr&. In our 
earlier papers (Gruner and Lehmann 1979, 1980a) we have analysed our data in 
terms of a memory function formalism based on the Smoluchowsky equation. The 
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Figure 2. Light scattering results from a colloidal liquid with nominal 1 . 2 5 X  
1013 particles/cm’. Shown as a function of wavevector k are: 0 S ( k )  the static structure 
factor; 0 (rc/D0k2)-’ the reciprocal first cumulant Tc in units of Dok2; 0 (rz/Dokz)-’ 
the reciprocal long-time decay constant in units of Dokz. 

reduced memory function M’ defined there is simply related to the Fokker-Planck 
based quantity $ired by (Hess 1981) 

(19) 
This equation shows that the Smoluchowsky equation is only valid for M ’ K  1. In 
figure 3 the reduced memory function $ire&, w = 0) is plotted against a reduced 
wavevector klk,,, where k,,, is the position of the maximum of S ( k ) .  Five different 
samples with different concentrations are included. They all seem to coincide on one 
universal function in this plot. It is seen that the friction due to the internal viscosity 
l+qq (equation (17)) of the colloidal liquids is very strong and gets even larger than 
the friction of the solvent described by 6 = mws = 6 ~ 7 ~ 6 .  

Within the viscoelastic approximation, which was shown to be valid experimentally, 
the memory function in the time domain (equation (3)) is a single exponential with 
the decay constant rM given in equation (18). Defining a dimensionless quantity 

$ired@, w )  = M‘(k,  w ) / ( l  -M’(k ,  U)). 

Tred = D&’/rM, (20) 
we are able again to make a universal plot for all concentrations studied (figure4). 
The dynamics of colloidal liquids is thus totally characterised by the static structure 
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I 
l 5  t 

t 

M 
0 1 2 3 

k 1 kmox 

Figure 3. The reduced memory function A&& w = 0) for colloidal liquids. Different 
symbols apply to different nominal concentrations p :  0 2.5 x 10" particles/cm3; 5 x 
10" particles/cm3; W 7.5 x 1012 or 1.0 x l O I 3  particles/cm3; 0 1.25 x lo t3  particles/cm'. 

I I 

k / kmx 

Figure 4. The relaxation time TM = ril of the viscoelastic memory function Mli(k, r )  in 
units of ( ~ ~ k * ) - ' .  

factor S ( k )  (compare figure 2) and a memory function described by the two parameters 
fired(k, w = 0) and 7,ed in figures 3 and 4 respectively. 

The last part of this section is devoted to a discussion of the hydrodynamic limit 
of fi and rM. It is seen from figure 3 that Mred goes to zero very fast for k = 0. This 
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is somehow unexpected since one would expect at least a k 2  dependence in the vicinity 
of k = 0. It has been pointed out by Hess and Klein (1981) that a k2 dependence is 
only observable in a very small wavevector region (k/kmax < 0.05) which is extremely 
difficult to measure experimentally. Therefore all extrapolations towards k = 0 have 
to be regarded with care. Nevertheless, we think that extrapolations provide useful 
information about the times and moduli involved characterising macroscopic properties 
of colloidal liquids. We have measured the low wavevector limit carefully in a sample 
with p = 1.25 x 1013 particles/cm3, which has a high k,, and therefore allows us to 
perform measurements down to k = 0.1 kmax, In figure 5 the low wavevector results 
for r M  and for Mll(k, t = 0) are shown where Mll(k, t = 0) is given by 

~ ~ ~ ( k ,  t = o ) =  (rl+rz-rc-rM)mpos/kz. 

- T 
* +  

1 
as 1 0 5  1 

k Ikmw klkmox 

Figure 5. The low wavevector region of the memory function Mll(k, t = 0) ( a )  and the 
relaxation constant rM (b )  for the sample with nominal 1.25 X 1013 particles/cm3 (compare 
figure 2). 

Whereas rM decreases towards smaller wavevectors and extrapolates linearly to a 
value of about r M ( k  = 0) = 4 x lo2 s-l, Mll(k, t = 0) stays almost constant at a value of 
1.9 dyn cm-'. According to equation (3), t = 0) is the difference between the 
instantaneous moduli K, + $G, which are not hydrodynamic transport coefficients 
and the bulk modulus x-', which is a hydrodynamic coefficient in the low wavevector 
limit. Therefore, figure 5 provides a direct estimate of the instantaneous moduli, which 
are found to be about 30% larger than x-' at k = 0 (compare table 2). The sound 
velocity in the hydrodynamic region is (Hansen and MacDonald 1976, p 231) 

(21) 

It is interesting to compare this quantity with the results of the colloidal crystals and 
with usual liquids. Due to the very limited hydrodynamic region (k/k,.,< 0.05) any 
extrapolation of measured data is dangerous. However, from the static structure 
factors (Gruner and Lehmann 1979, 1980a) it is possible to obtain values for S(k = 0) 
which should be correct within a factor of two. They are listed in table 2 together 
with the calculated compressibilities and sound velocities. 

Although the above-mentioned uncertainties of the concentrations and of the 
extrapolation towards k = 0 yield a systematic error of about -30% + 40% for cI and 
of -50% + 150% for x- ' ,  the concentration dependence is unaffected and it is seen 
from table 2 and figure 8 that x-' - p 2  and c: - p ,  a behaviour which is different from 
the one of the colloidal crystals discussed in 0 4.2. 

c: (k  = 0) = kBT/mS(k = 0). 
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Table 2. The static structure factor S ( k  = 0), the bulk modulus x - l  and the longitudinal 
sound velocities of the colloidal crystals in the hydrodynamic limit. Accuracy is about a 
factor of two for S ( k  = 0). The densities are nominal densities (compare I 3). 

p (IO’* particles/cm3) S (k = 0) ,y-’ (dyn cm-’) cf (cm sC1) 

2.5 0.30 0.29 17 
5.0 0.23 0.78 20 
7.5 0.14 2.0 26 

10.0 0.11 3.3 29 
12.5 0.07 6.3 35 

4.2. Colloidal crystals 

Dynamical light scattering experiments on colloidal crystals seemed to be an 
unmanageable task due to the high concentrations of particle involved, since the 
tremendous multiple scattering obscured everything. When it became possible, 
however, to grow single crystals of centimeter size at moderate volume fractions of 
the order of one per cent, this problem was reduced by orders of magnitude. It is 
easily verified by comparing the turbidity of colloidal liquids or colloidal polycrystals 
with single crystals at the same concentration, that the latter are much more transparent 
and hence exhibit much less multiple scattering. 

Looking at the experimental data for a single crystal (nominal concentration 
p = 6 . 2 X 1 O I 3 )  in figure6 it is seen that the polarised scattering is fitted by two 
exponentials, whereas the depolarised scattering is fitted by one exponential with a 
large decay constant r,, which is not k dependent within experimental accuracy. 

0 
1 o3 

1 .o 2.0 3.0 

k (lo5 cm-’) 

Figure 6. Dynamic light scattering results from a colloidal single crystal (particle diameter 
0.085 F m  nominal concentration 6.2 x l O I 3  particles/cm3). The decay constants of the 
field correlation function are shown calculated from a fit to the intensity correlation 
function 0 vv scattering; 4 VH scattering. 
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Moreover, measurements in Hv-scattering geometry and, more important, in HH- 
scattering geometry, which is the polarised component of the multiple scattering at 
90" scattering angle (compare Griiner and Lehmann 1980b), give also exponentials 
with the same decay constant r,, within experimental accuracy. The same decay 
constant rms always occurs as the short time decay of the polarised scattering and we 
therefore attribute this wavevector independent short-time decay to multiple scat- 
tering. 

Shear fluctuations, which should exhibit a wavevector dependence, are not observed 
in any depolarised scattering geometry. 

The smaller decay constant in vv scattering is due to longitudinal fluctuations and 
there is only one single exponential decay observed. Comparison of the amplitude 
to background ratio (I2)/(1)' for colloidal liquids and colloidal crystals, at concentra- 
tions where both states could be realised, shows almost identical values, except at the 
position of the Bragg peak. This is a hint that no elastic component is present between 
the Bragg peaks. Measurements to decay times of up to 10 ms gave no evidence €or 
a slower decay, which would be present if the behaviour of the crystals were not 
purely elastic (equation (3)). The decay constants of the longitudinal modes are given 
by equation (10) 

r = o:l/~s 

simply proportional to the square of the longitudinal phonon frequency. We are 
therefore able to extract the phonon dispersion for the colloidal crystals. This is shown 
in figure 7 for all crystals studied. Two different particle sizes (a  = 0.042 p m  and 
a = 0.045 pm) and three different volume fractions (0.5%, 2% and 5% nominal) are 
shown. Surprisingly, all the different crystals show the same frequencies within 

10 i 

P 
I I 1 I 

0 1 2 3 

k (10' cm-') 

Figure 7. Phonon dispersion of colloidal crystals calculated from the experimental data 
according to equation (12). The different crystals are indicated by different symbols: 
X nominal 1.25 X particles/cm3 (particle diameter 0.091 pm); 0 nominal 5.1 x 
1013 particles/cm3 (particle diameter 0.091 pm); 0 nominal 6.2 x l O I 3  particles/cm3 (par- 
ticle diameter 0.085 wm); 0 nominal 12.5 x 1014 particles/cm3 (particle diameter 
0,091 pm); W nominal 1.55 x 1014 particles/cm3 (particle diameter 0.085 pm). 
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experimental accuracy. The small wavevector limit up to k d 0.5 x lo5 cm-’ is con- 
veniently described by a linear dispersion, leading to rather accurate values for the 
sound velocity 

C[ = (E/mp)”’ 

and for the elastic modulus E = K + PG. 
From the fact that the crystals were not oriented with respect to the scattering 

plane, and hence the direction of k varies from experiment to experiment, it may 
be concluded that the elastic behaviour is isotropic. Furthermore, comparison with 
table 1 shows that the k region in figure 7 covers more than one Brillouin zone, and 
the dispersion is not a simple sin(kd) law, which would have been expected if only 
nearest-neighbour interactions played a role. 

To analyse the dispersion further, the actual interaction potential has to be known, 
which unfortunately it is not, since the simple screened Coulomb potential does not 
apply, as we will show. 

In figure 8 we compare the longitudinal sound velocities of the colloidal liquids and 
crystals. Whereas the colloidal liquids show sound velocities c: -p ,  the sound velocities 
of the crystals are constant (cI = 100 cm s-l) over the concentration regime measured. 
Moreover, there is a clear increase in sound velocity at the phase transition from 
liquid to solid at p = 1.25 x 1013 particles/cm3 of about a factor of 2.5. 

The concentration independent sound velocity implies a linear dependence of the 
elastic moduli on the particle density which may be seen from the table 3 where the 
moduli and sound velocities are listed. The values for E may be compared with the 
results from shear experiments by Dubois Violette et a1 (1980), who obtain E =  
110 dyn cm-’ at particle density of 2 x 1013 cm-3 and from ultrasonic measurements 

1 0‘ 
10’2 1 0 ’ ~  1 O’L 1 0 ’ ~  

p (cm-’~ 

Figure 8. Square of the sound velocities as a function of nominal particle concentration 
for colloidal liquids ( x )  and crystals (different symbols around lo4 cm2 s-~). The broken 
line is the thermal sound velocity of a very dilute system c:, = k B T / m .  
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Table 3. The elastic moduli and sound velocities of the colloidal crystals at small 
wavevectors. The densities are nominal densities (compare 13). Crystals marked with+ 
are prepared from particles with 0.085 Fm nominal diameter, the others from particles 
with diameter 0.091 Wm. 

~~~~~ ~ ~~ 

p (ioi3 particles/cm3) E (dyn e, (cm s-') 

1.25 45 93 
5.1 195 96 
6.2+ 255 116 
12.5 420 86 
15.5 + 575 101 

(Mitaku et a1 1978) with G = 1200 dyn cm-' at a density of 3.6 x 1013 particles/cm3. 
The latter value has been obtained at a frequency of 7 x lo4 s-l, which is not the low 
frequency limit as can be seen from figure 6. 

The linear dependence of E on concentration, which was also observed by Dubois 
Violette et al (1980), cannot be explained by a screened Coulomb potential which 
should yield the concentration dependence of equation (16). Also, any other solution 
of the linearised Poisson-Boltzmann equation may be excluded, since any of these 
solutions (e.g. Hastings 1978, Russel and Benzing 1981) always leads to a strong 
nonlinear concentration dependence, in contradiction to our experiments and those 
of Dubois Violette et a1 (1980). We conclude that the elastic moduli and the phonon 
dispersion can give detailed information on the interaction potential of colloids. 
However, to extract this information, a detailed theoretical analysis is necessary, 
which is outside the scope of this paper. 

5. Conclusions 

In this paper we have given a summary of our experimental results on strongly 
interacting colloidal systems. The first dynamic light scattering experiments on col- 
loidal single crystals were reported. Both the systems exhibiting long-range order, 
the colloidal crystals, and the systems showing short-range order, the colloidal liquids, 
are described by the same formalism. This memory function approach based on the 
Fokker-Planck equation, originally developed to describe the dynamics of simple 
liquids (Hansen and MacDonald 1976), turned out to be a perfect description for the 
colloidal crystals, if the viscoelastic approximation, which gives the features of the 
liquid, is converted to a purely elastic approximation. 

With this theory, the experiments were discussed in terms of elastic moduli, which 
would give rise to phonons in condensed matter, whereas in colloids, these phonons 
are overdamped due to the friction of the solvent. 

The main results of our investigation may be summarised as follows. 
(1) For an appropriate discussion of strongly interacting colloids, the momenta of 

the colloidal particles have to be considered, or in other words, a description of 
colloidal liquids and colloidal crystals in terms of the Smoluchowsky equation fails. 

(2) From the experiments, the velocities of sound may be extracted. There is a 
significant difference between the liquids and the crystals. 

(3) The data from the colloidal crystals cannot be explained in terms of the widely 
used screened Coulomb or Debye-Huckel potential. 
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The last point clearly is not satisfactorily solved, since the question of the effective 
potential between charged particles is one of the central problems of colloidal science. 
We hope to get more quantitative information by solving the nonlinear Poisson- 
Boltzmann equation numerically and comparing the moduli and phonon dispersions 
thus obtained with the experimental data. 
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